Fuels are any material that store potential energy in forms, which upon burning in oxygen liberates heat energy.
Calorific value of fuel is the total quantity of heat liberated when a unit mass or volume of fuel is completely burnt.
Higher or gross calorific value (HCV) in the total amount of heat produced when a unit mass/volume of fuel has been burnt completely and the products of combustion have been cooled to room temperature (15°C or 60°F).
Lower or net calorific value (LCV) is the heat produced when unit mass (volume) of the fuel is burnt completely and the products are permitted to escape.
LCV = HCV – Latent heat of water formed
Natural or primary fuels are found in nature such as wood, peat, coal, natural gas, petroleum.
Artificial or secondary fuels are prepared from primary fuels charcoal, coal gas, coke, kerosene oil, diesel oil, petrol, etc.
Fuels are further classified as
Solid Fuels
Liquid Fuels
Gaseous Fuels
Characteristics of solid fuels
Ash is high.
Low thermal efficiency
Form clinker
Low calorific value and require large excess air.
Cost of handling high
Cannot be used in IC engines.
Characteristics of liquid fuels
High calorific value
No dust ash and clinker
Clean fuels
Less furnace air
Less furnace space
Used in IC engines
Characteristics of Gaseous fuels
Have high heat content
No ash or smoke
Very large storage tanks are required
An ideal fuel should have the following properties:
1. It should possess high calorific value.
2. It should have proper ignition temperature. The ignition temperature of the fuel should neither be too low nor too high.
3. It should not produce poisonous products during combustion. In other words, it should not cause pollution o combustion.
4. It should have moderate rate of combustion.
5. Combustion should be easily controllable i.e., combustion of fuel should be easy to start or stop as and when required.
6. It should not leave behind much ash on combustion.
7. It should be easily available in plenty.
8. It should have low moisture content.
9. It should be cheap.
10. It should be easy to handle and transport.
CRUDE OIL
Crude oil is not used directly as a fuel but as a feedstuff for the petrochemical factories to
produce commercial fuels, synthetic rubbers, plastics, and additional chemicals. Oil
refineries were originally placed near the oil fields, in part because natural gas, which could
not then be economically transported long distances, was available to fuel the highly energy-
intensive refining process, but since 1950, for strategic reasons crude oil was transported by
tankers and oleoducts to local refineries.
Bioethanol and ETBE
Bioethanol is bio-fuel substitute of gasoline; i.e. it is ethanol obtained from biomass (not
from fossil fuels), and used as a gasoline blend. Pure bioethanol (E100-fuel) is by far the most
produced biofuel, mainly in Brazil and USA. More widespread practice has been to add up to
20% to gasoline by volume (E20-fuel or gasohol) to avoid the Fuel properties 4 need of
engine modifications. Nearly pure bioethanol is used for new ‘versatile fuel vehicles’ (E80-
fuel only has 20% gasoline, mainly as a denaturaliser). Anhydrous ethanol (<0.6% water) is
required for gasoline mixtures, whereas for use-alone up to 10% water can be accepted.
DIESEL, KEROSENE, AND JET FUEL
Diesel fuel is any liquid fuel used in diesel engines, originally obtained from crude-oil
distillation(petrodiesel), but alternatives are increasingly being developed for partial or total
substitution of petrodiesel, such as biodiesel (from vegetal oils), and synthetic diesel
(usually from a gas fuel coming from coal reforming or biomass, also named gas to liquid
fuels, GTL). In all cases, diesel nowadays must be free of sulfur.