The photoelectric effect
The photoelectric effect is the emission, or ejection, of electrons from the surface of, generally, a metal in response to incident light.A material that can exhibit The photoelectric effect is said to be photoemissive, and the ejected electrons are called photoelectrons. The process was discovered by Heinrich Hertz in 1887. Attempts to explain the effect by classical electromagnetic failed. In 1905,Albert Einstein presented an explanation based on the quantum concept of Max Planck.
Einstein described the photoelectric effect using a formula that relates the maximum kinetic energy (Kmax) of the photoelectrons to the frequency of the absorbed photons (ƒ) and the threshold frequency (ƒ0) of the photoemissive surface.
Kmax = h(ƒ ? ƒ0)
Following Conclusions can be drawn for Photoelectric Effect:-
1) If the frequency vof the light is constant, the photoelectric current increases with increasing intensity of the light.
2) The photoelectrons are emitted within less than 10″9’sec after the surface is illuminated by the light. The emission is essentially instantaneous with illumination.
3) For a given photosensitive surface, the emission of the photoelectrons takes place only if the frequency of the light is equal to or greater than a certain minimum
288 64 288 64S117.2 64 74.6 75.5c-23.5 6.3-42 24.9-48.3 48.6-11.4 42.9-11.4 132.3-11.4 132.3s0 89.4 11.4 132.3c6.3 23.7 24.8 41.5 48.3 47.8C117.2 448 288 448 288 448s170.8 0 213.4-11.5c23.5-6.3 42-24.2 48.3-47.8 11.4-42.9 11.4-132.3 11.4-132.3s0-89.4-11.4-132.3zm-317.5 213.5V175.2l142.7 81.2-142.7 81.2z"/> Subscribe on YouTube